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The FTI First Proposed Using Lunar Helium-3 For Fusion

Helium-3 & Lunar Volatiles for Fuel & Life Support Schmitt and Olson, 2013
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The Moon has retained over 1 million tonnes of 3He
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Heating Regolith Releases *He
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There has been He-3 Miner Design Work at the FTI Since 1988
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Research is Ongoing to Test a Scalable Version of the Volatiles Extraction System

Helium Extraction & Acquisition Test bed (HEAT)
* Testbed for:

* Thermal recuperation with a heat pipe heat exchanger

= Volatiles extraction in a heat exchanger

= Laboratory scale (Technology Readiness Level — TRL 4)
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HEAT Can Test Volatile Extraction in a Heat Pipe Exchanger

VQQI g W Regolith Simulant
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» Heat Pipe Heat Exchanger (HPHX)

* Maximum mass flow rate (0.62 kg/s) (1:250
scale of Mark II)

* Heats regolith from ~20 °C up to 450 °C to
release 30-50% of embedded helium

. Design for <100 um JSC-1A regolith
simulant

= [nstrumentation

* [R Imager, Thermocouples (K), Load Cell
& RGA Instrumentation
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‘The Heat Pipe Analysis is Based on a Countertlow HX Model

Energy balance of cold & hot regolith flow
Effectiveness — NTU method

= Heat pipe effectiveness - function of thermal Recj (“quid)
conductance regolith flow capacitance rate PT.hro

Thermal conductance - product of heat
transfer coefficient and surface area

Q = Cy(Thi — Tho) = Cnen(Thi — Tp) | N
= Cc(Tco - Tci) = Cc‘(:c(Tp - Tci)

g, = Thi — Tho — 1 — e~ NTUp g, = TCO _ TCi _ a—NTU,
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The Heat Pipe HX is Modeled like a Staged Counterflow HX

* Tei1
\ ‘ 1 l L T,, (@ System of equations solved in EES

P S Teiz =Teo1
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o Teiz =Tco2
Tp3 @ r..T., KeyInputs
T,, ﬂj e = Regolith and pipe friction and thermal
P 1T ot properties
Tos ﬁ Tyos Toos = Heat transfer coefficient functions

= Regolith inlet temperature (Tgjq)
= Regolith maximum temperature (Tyiy)

This = Thtr,o q
T,e

This =Thos W Outputs
Thiz = Thos Tpa = Heat pipe stage temperatures (N)

Heat pipe heat transfer

Regolith temperature vs. heat pipe stage
Heater section inlet temperature

Heater power and heat flux requirements
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This Research Effort Focuses on an Analytical Flow Model

* The granular friction properties influence the flow channel shape
* The Niegsch model (Niegsch et al., 1994) incorporates the stagnation and void areas of flow
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The Flow Model Produces A Velocity Field & Surface Heat Transfer Coefficient
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Regolith Velocity vs. Position Between Heat Pipes
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JSC-1A to Heat Pipe Heat Transfer Coeff. vs. Velocity and Regolith Temp.
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The HPHX Nominal Design Uses Five Stages of Flattened Heat Pipes

Inlet Regolith Flow
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HPHX Predicted to Recuperate 72% of JSC-1A Thermal Energy

25 kg/hr (7 g/s) flow rate

Fluid HP HP Heat Stage Inlet: 20°C l Regolith temp.
Temp. 450°C

Water 101°C 34 W 1

Water 147°C 54 W 2
Dowtherm A 207°C 66 W 3 «
Dowtherm A 275°C 80 W 4
Dowtherm A 349°C 86 W 5 ° %@

Input Power 922 W Heaters Q@OQQQQQOQOQO

Recoup. Efficiency 72 % %&%
Cartridge Power 42 W O
Heater Heat Flux 2.2 W/cm? OOOOOO
Heater Surf. Temp. 460 °C OOOOOOO

Total Residence 78 seconds
Heater Residence 14 seconds
20°C
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Summary

* Modeling approach developed to design heat pipe heat exchangers for regolith

* Modeling results will be compared against experimental results in the Helium

Extraction and Acquisition Testbed (HEAT) device

" Demonstration of volatile extraction 1iia heat pipe heat exchanger before the

end of this research effort

* The modeling approach for heat pipe heat exchangers could useful for the

extraction of water from hydrated and/or icy regolith
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Modeling for Water Extraction on Mars (Ice or Hydrated)

40 kg/hr (11 g/s) flow rate 40 kg/hr (11 g/s) flow rate
Fluid Temp. Stage Inlet:-10°C l Regolith temp. Fluid Temp. Stage Inlet: -40°C l Regolith temp.
Water 66°C 1 300°C Methanol -26°C 1 — 11°C
Water 104°C 2 Methanol -20°C 2 <
Water 143°C 3 Methanol -16°C 3 < qﬂmppf\p
Water 184°C 4 < Methanol -10°C 4 < N
Dowtherm  225°C 5 | Q j [ﬁ‘ ) J U Methanol -5°C 5 |
Water Extraction ()QQQ O Water Extraction (
(12% Concentration) 3.8 kg/hr @er Ct (10% Concentration) 3.2kg/hr Heater section
Power/Water Rate 1.1 MJ/kg Power/Water Rate 3.3 MJ/kg
Input Power 1.1 kW Input power 4.6 kW
Recoup. Efficiency 66 % | - Recoup. Efficiency 53 %
Cartridge Power 43 W \JUUUUUU Cartridge Power 141 W
Heater Heat Flux 2.3 W/cm? Heater Heat Flux 7.4 W/cm? UL 7
Heater Surf. Temp. 301°C Heater Surf. Temp. 121°C W
Total Residence 41 seconds o Total Residence 41 seconds 0
Heater Residence 7.5 seconds Outlet: 100°C Heater Residence 7.5 seconds Outlet: -17°C
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University of Wisconsin, Madison
P Centennial Challenges
The proposal is for the development of a prototype lunar volatiles extraction

L] L]
. COllab Oratl On Wlth Center Innovation Fund system the will demonstrate a process for acquiring helium-3 and volatile

Flight Opportunities gases that can be used for life support. Helium-3 could be used in future fusion
[< enne dy Sp ace ‘ enter Game Changing Development reactors that would produce no radioactive waste. The process of acquiring
NIAC helium-3 produces far more life supporting volatile gases than helium-3, and

SBIR/STTR incorporates many of the technologies that may be required in the future for

supporting multiple in space outposts from lunar resources. The prototype
Small Spacecraft Technology

= — R - system will be based on a past lunar volatiles miner design, developed at the
ace Tech Research Grants
P University of Wisconsin Fusion Technology Institute, and will be a scaled down

Tech Demo Missions version that will investigate issues of system optimization for volatile production,

Strategic Integration & component degradation due to continuous exposure to regolith simulant and

Analysis thermal energy efficiency of the prototype’s heat pipe heater system.
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